2007 透 皇

CONTENTS新年の御挨拶平成19年度（第23回）牛に係る家畜人工授精に関する講習会について国産種雄牛が活躍する ＂ヒラリー＂ファミリーの紹介

長命性に関する遺伝的能力評価について
酪農家の新たな＂夢＂への挑戦 8
今後のホルスタイン種雄牛導入について
黒毛和種 産肉能力検定の＂現状と今後＂
精液の中の性比
事業所だより

平成19年1月20日号 2007 January Vol． 0 O5

2007年の年頭にあたり，謹んで新春のお喜び を申し上げます。

皆様には，日頃より本団の乳•肉用牛の改良増殖事業推進にあたりまして，特段のご厚情を賜り朿心より厚くお礼申し上げます。

昨年を振り返りますと春先は冷涼な気象であり ましたが，7月•8月の猛暑と一年おきの夏期間猛暑による影響も重なり，搾乳牛の健康，特に発情•受胎性への影響が懸念されている現況にあります。

更には，生乳の減産型計画生産が浸透しつつ ある中，経産牛の淘汰が進み乳牛頭数が減少し ており，一方では黒毛和種の交雑種交配が大きく伸びているなど次年度以降の後継乳牛の確保も課題となってきております。

また，全国的な飲用牛乳の消費減少などによる生乳の需給緩和状態が続いており，牛乳•乳製品の消費拡大の積極的な推進と共に需要に応じ た計画的な生乳生産の推進が引き続き必要とな っております。

さて，本団事業につきましては，直近の乳用種雄牛評価成績において本団種雄牛が好成績を示し上位40頭の中に21頭を占めると共にインター ブル評価においても良好な成績を収めております ので，わが国の気候風土を土台にした後代検定事業から選抜された優秀な検定済種雄牛を安心

してご利用いただきたいと存じます。
また，関係者のご協力のお套をもちまして，国内 における候補種雄牛生産も順調に進んでおります。

一方，黒毛和種種雄牛につきましても，道内関係者のご協力により後代検定事業を推進すること が出来，その中より育種価およびフィールドにおけ る枝肉成績の高い種雄牛が出現してきましたので，生産者の皆様に北海道で検定•選抜した検定済種雄牛の精液をご利用いただけるようになって参 りました。

これら一重に乳•肉用牛生産者の皆様と関係者のご指導・ご協力の賜物と心から感謝いたして おります。

新年につきましても，酪農•肉牛経営の安定に寄与するため，役職員一同一丸となって努力を重ねて行く所存でございますので，引き続きご指導ご鞭撻をよろしくお願い申し上げ，新年のご挨拶とさせていただきます。

平成19年度（第23回）
 牛に係る家畜人工授精に関する講翌会について

次のとおり開催しますので，受講を希望する方は受講願書及び履歴書等を提出してください。
1 開 催 者：社団法人ジェネティクス北海道
2 期 日：平成19年6月25日（月）から
同 7月19日（木）まで（日曜日を除く22日間）
3 場 所：財団法人清水町農業振興公社
上川郡清水町字御影南2線77番地（Tel 0156－63－2011）
4 講習科目：家畜改良増殖法施行規則第 23 条に定められた科目及び時間
5 修業試験：平成19年7月19日（木）及び20日（金）（場所は講習会と同じ）
6 受講資格：牛に係る家畜人工授精師の免許を取得しようとする方で，家畜改良增殖法第17条の規定に該当しない方（別記を参照）。
7 受講人員：30名程度（希望者が多数の場合は次により選考します）
（1）一 般～選考試問及び書面審査。
（2）推 薦～書面審査。
（家畜人工授精事業を実施している農業協同組合又は農業共済組合等に勤務する職員であって，欠員補充等の理由で免許取得が必要となった方）
8 受講手続：次の書類を（社）ジェネティクス北海道理事長に提出してください。
（1）受講願書（別記様式）及び履歴書（市販様式）

- 履歴書の写真は本人と確認できるものに限ります。
- 履歴書に受講を希望する理由を具体的に記載してください。
（2）上記7の（2）（推薦）に該当する方は，免許取得が必要となった理由を記した組合長の
推薦書を添付してください。
（3）提出期限は平成19年4月24日（火）必着とします。
9 選考試問：
（1）実施期日及び場所は後日連絡します（5月下旬，札幌市及び清水町を予定）。
（2）出題範囲は（1）畜産に関する一般常識（2）中学校，高等学校における生物の教科。
10 受講許可：受講者に受講許可通知書を郵送します。
11 受 講 料：60，000円
（1）宿泊費等は含まれていません。
（2）支払方法は，受講許可通知書に記載します。
12 宿泊場所：希望する方には，紹介します。
13 その他：
（1）提出書類は返却しませんので，ご了承ください。
（2）書類の送付及び照会先は右のとおりです。

社団法人 ジェネティクス北海道•生産部
 〒060－0004 札幌市中央区北4条西1丁目1北農どル ［Tel 011－242－9644，Fax 011－242－9651］

受講願書様式

受 講 願 書
平成 年 月 日
社団法人ジェネテイクス北海道
理事長 矢野 征男 様
所 属
本籍地（都道府県名）
現住所
氏 名 （©）
昭和•平成 年 月 日生
牛に係る家畜人工授精に関する講習会を受講したいので，関係書類を添えて提出します。

国産種雄牛が活躍する ＂ヒラリー＂ファミリーの紹介

ヘンカシーン牧場

ヘンカシーン・エム・ヒラリー・ETは，1992年11月にアメリカ アイオワ州 北部ルアナ地区のヘンカ シーン牧場（トレント\＆レスリー・ヘンクス）で誕生し ました。

この地域には，著名なブリーダーが数多く存在 しており，世界に優秀な遺伝資源を販売するなど，酪農は極めて重要な経済位置を占めております。結果として，エリートカウ遺伝子の宝庫となり，また短時間で数多くのブリーダーを訪問できることで世界各国の授精所関係者や購買者が多く訪れ ていました。ヘンカシーン牧場は家族 5 人経営で，経産牛 55 頭（総頭数 110 頭），牛群平均 $11,970 \mathrm{~kg}$ ， F3．7\％，P3．1\％です。

ヘンカシーン エム ヒラリー ET
＂ヒラリー＂の誕生
＂ヒラリー＂のエリートカウとしての始まりは，1990年代の初期で，母方祖母ヘンカシーン・チエアマン・ マンデイにチーフ・マークを交配して誕生したヘン カシーン・マーク・マーシー EX－94は，ヘンカシーン牧場最初のブルダム（種雄牛生産母牛）として貢献いたしました。
この後, マーク・マーシーとカリーズエム・ホリデー・

ET（ $\begin{gathered}\text { ふネツド・ボーイ）との交配で誕生したのが }\end{gathered}$ ＂ヒラリー＂です。

父ホリデー・ETは，世界中に27，000頭以上の

娘牛を残しており，特に高乳蛋白量•率でアウトクロ ス ブルとして広く使用されました。
＂ヒラリー＂は，ホリデー・ETの最高傑作娘牛と して，高乳蛋白量 率に加え好体型娘牛であり， ベストレコードは8歳00ヶ月でM19，233Kg，F4．1\％， P3．6\％を記録し，9歳04ヶ月でEX－94点を獲得し ました。その間，65頭の子孫を残し，また海外へ 75個以上の受精卵を販売致しました。現在，ヘン カシーン牧場の牛群は4分の3が『ヒラリーファミリー』 で形成されております。

＂ヒラリー＂からの子孫

＂ヒラリー＂から生産された種雄牛が，世界各国の人工授精所に数多く繋養されました。

中でも，北米で最も大成したのがエモリー・ET の息牛 ヘンカシーン・ヒルクレスト・ET（セレクトサイ アーズ 所有）で，当時安定した能力と体型指数 +2.0 を超え，特に強さ・高さ・胸の深さ・尻の幅に優れた種雄牛でした。

また，カナダには，ヒルクレスト・ETのフルブラザー であるヘンカシーン・エンペラー・ET（シーメックス アライアンス）がおり，晩年韓国の人工授精所へ譲渡されました。さらに，彼らのフルシスターである ヘンカシーン・ヒルズ・エメラルド・ET（オランダ・ ALHジェネティクス）からは，ダーハムによる種雄牛 メスランド・デユープレツクス・ETがスペイン評価成績ICOで第4位（2006－8月公表時点）にランキン グされております。

デユープレツクスは体型改良のスペシヤリストと して国内のみならず北米やヨーロッパ各国でも種雄牛生産のための計画交配用種雄牛として利用されております。

日本における＂ヒラリー＂

ジェネテイクス北海道では，早い時期から『ヒラ リーファミリー』の雄大なフレーム・デーリイキヤラク ター・乳器の良さに加え，特に乳蛋白量•率の改良 に注目しておりました。平成7年計画交配によるド ンビネーターの候補種雄牛H－3459 ヘンカシーン・ ドミノ・ET（平成8年度後検）と，ルドルフによるJP3 H51532 ヘンカシーン・ホーネツト・ET（平成10年度後検）を導入しました。

```
ヘンカシーン•マーク•マーシー EX-94
    ヘンカシーン•エム•ヒラリーET EX-94
    -ヘンカシーン•ニック•ハリナETEX-90 (ニツク)
        \_フJP3H51688 ヘンカシーン•ハンクET (マテイG)
        8JP3H03459 ヘンカシーン•ドミノET (ドンビネーター)
        ふハヘンシシーン•ヒルクレストET (Iモリー)
    —`フヘンカシーン•エンペラーET (Iモリー)
    _—ヘンカシーン•ヒルズ•エメラルト"ETEX-91 (Iモリー)
        ——カーントウエイ•ダーハム•IミリーETEX-91(ダーハム)
        ——『メスランド•デュープレツクスETEX (ダーハム)
            —MBZ·ハーシェル•エメラルト" EX-92 (ハーシエル)
                _JZM•ストーマテイツク•エメラルト"164 VG-87 (ストーマテイツク)
    - 『ヘンカシーン•ヒルウート"ET (ベルウード)
    ——ヘンカシーン•ルト"•ヘイテ"イET EX-90(ルト"ルフ)
        —ヘヘンカシーン•BWM•ミツドナイトET VG-87 (BWマーシャル)
        ーヘンカシーン•BWM-ヘイテ"イET VG-87 (BWマーシャル)
                ーカーントウエイ•モーティ•ホリーET VG-87 (モーテイ)
            —ヘヘンカシーン•ヘイディ•ブレイスET VG-86 (ブリツツ)
        ヘンカシーン•ルト"•ヒヤシンスET VG-88(ルト"ルフ)
        0.JP3H51532 ヘンカシーン•ホーネツトET (ルドルフ)
        ヘンカシーン•ヒラリー•ホワイト•メイソン(メイソン)
        - %JP3H52078 ヘンカシーン•トツプ•ドリームET (テスク)
        ——ァヘンカシーン•スター•ドリームET (ヘラルド)
```

平成12年度後検には＂ヒラリー＂とニツクの娘 ヘンカシーン・ニツク・ハンナ・ETに計画交配でマテイ Gの候補種雄牛JP3H51688 ヘンカシーン・ハンク・ ETを導入しました。また，＂ヒラリー＂の娘ホワイト・ メイソン・ET（父 メイソン）にテスク・テリーを交配し て生産された国産種雄牛JP3H52078 ヘンカシ ーン・トツプ・ドリーム・ETは，平成17年2月最初の

JP3H52078 ヘンカシーン トツプ ドリーム ET

成績で，総合指数•乳量•乳脂量•無脂固形分量•乳蛋白量が全国第 1 位と圧倒的な泌乳能力の高 さで公表されました。

トツプ・ドリーム・ETは，平成10年度 MOET育種法実践モデル事業（バージンフラッシュ）により，次世代への優良遺伝子先取り事業として計画交配され輩出されました。

母ヘンカシーン・ヒラリー・ホワイト・メイソン・ET EX－91は平成18年11月の全国雌牛評価成績で第1位にランキングされており，娘•孫娘達もまた上位ランキングされ活躍しております。期待どおりの

体型と能力に優れたエリートカウとなりました。
交配種雄牛テスク・テリーは，高い泌乳能力と優れた体型を遺伝する種雄牛であり，母の血液 を大きく受け継ぎ，最新の成績で乳代効果•乳量•無脂固型分量が全国第 1 位，総合指数•乳蛋白量が全国第 4 位（平成 18 年11月公表）となり，体型面でも尻幅広く，後乳房の幅があり，中央懸垂靭帯が強い搾乳性に優れた娘牛が生産されて おります。また，初回成績公表時より総合指数 連続8回 全国第4位以内にランキングされており，安定した成績を保持しております。

血統を見ても，テスク・テリーメメイソンメホリデー と数少ないアウトクロス種雄牛と言えます。

『ヒラリーファミリー』は現在も日本の乳牛改良 に大きく貢献し活躍が著しいファミリーです。
（乳牛改良課 伊藤 克美）

| $H 17.11$ | 1.906 | 4 | 2.345 | 1 | 44 | -0.43 | 183 | 1 | -0.21 | 55 | 2 | -0.19 | $33 / 31$ | 78% | 0.45 | -0.69 | -0.13 | 0.31 | 0.61 | 0.65 | $30 / 29$ | 66% |
| :--- |

H 18.02	1,858	4	2,297	1	45	14	-0.41	179	1	-0.21	53	2	-0.19	$33 / 31$	79%	0.41	-0.75	-0.16	0.26	0.56	0.64	$30 / 29$
H 18.05	1.807	3	2,345	1	43	-0.44	179	1	-0.25	53	5	-0.20	$33 / 31$	81%	0.40	-0.74	-0.19	0.26	0.58	0.63	$30 / 29$	66%

H 18.05	1,807	3	2,345	1	43	-0.44	179	1	-0.25	53	5	-0.20	$33 / 31$	81%	0.40	-0.74	-0.19	0.26	0.58	0.63	$30 / 29$	66%
H 18.08	1.827	4	2.353	1	43	21	-0.45	180	1	-0.25	53	5	-0.21	$33 / 31$	81%	0.41	-0.74	-0.16	0.29	0.56	0.63	$30 / 29$

長命性に関する遣伝的能力評価について

長命性（在群期間）の評価利用にあたつて

長命性（在群期間）の遺伝的能力評価を2006年11月評価から開始されました。

この評価値は，遺伝率や信頼度が低いことから，補助的情報として，分娩難易や気質，搾乳性等の管理形質と同様 に参考程度の情報としてご利用ください。

1．表示方法

評価された種雄牛全体の平均を100とし，ベース年に生 まれた雌牛のEBVの標準偏差により標準化した97～103 の7段階の表示となります。
102～103：在群期間が比較的長い
99～101：普通
97～98：在群期間が比較的短い

2．公表基準

泌乳形質及び体型形質共に，娘牛が 10 牛群 15 頭に分布していること。

3．遺伝的能力評価での前提条件

「長命性」とは，どの程度長生きする素質（寿命）を持っ ているかです。

しかし，乳用牛は経済動物として経営に貢献できなくなっ た場合，淘汰により死期が左右されます。「長命性」の遺伝的能力評価は，＂寿命＂ではなく，経済動物として＂淘汰又 は死亡した年齢＂を基にして評価することとなります。

4．遺伝的能力評価の指標

長命性の遺伝的能力評価の指標として，次の項目を挙 げられます。
（1）産 次 数：淘汰又は死亡するまでの産次数
（2）在群期間：淘汰又は死亡するまでの日数
（3）生産期間：淘汰又は死亡するまでの搾乳日数の和
しかし，泌乳や体型に係る遺伝的能力の高い雌牛は供卵牛にされることも有り，在群期間は長くても産次数が少 なく生産期間が短いケースが考えられるので，客観的に遺伝的能力評価が行えるよう在群期間を指標とすることにし ました。

なお，上記の3つの指標は相関が高く，表型相関注 $10.94 ~ 0.95$ ，遺伝相関注 $20.96 \sim 0.99$ でした。

注1表型相関：実測したデータの関連性で，1に近いほど関連が強いことを示す。
注2 遺伝相関：遺伝的評価値の関連性で，1に近いほど関連が強いことを示す。

5．在群期間に係る遺伝的能力評価に用いる情報

種雄牛の在群期間に係る遺伝的能力評価は，実際に娘牛の在群期間情報（直接評価）が利用されます。しかし， この情報だけでは，現在利用している新しい種雄牛は娘牛 が現在生存中であり，在群期間の情報が殆どないので，

評価ができません。このため，「在群期間」と「初産乳量」 および「7形質」（胸の幅，尻の角度，蹄の角度，後乳房の高さ，乳房の懸垂，乳房の深さ，前乳頭の配置）との遺伝相関を利用して評価（間接評価）を行うことにしました。アメリ カなどでも，日本と同様に泌乳や体型の情報を利用して長命性の評価が行われています。

なお，生乳需要緩和の生産抑制対策として取り組まれて いる早期淘汰の結果も，「在群期間」の情報として用いられ ることとなりますが，これらは，牛群毎の影響として計算され るため，種雄牛の評価値を偏らせることはありません。

なぜ，「高さ」や「前乳房の付着」を用いて在群期間の評価がされないのか，疑問に思う方が居るかもしれません。

その理由は，これら形質と在群期間との遺伝相関が比較的低いこと，「高さ」と「胸の幅」，「前乳房の付着」と「乳房 の深さ」の遺伝相関が高いことから，「高さ」や「前乳房の付着」を直接用いなくても「胸の幅」及び「乳房の深さ」を用いることによって間接的には考慮されていることになり，よ り精度の高い在群期間の評価値を得ることができるからです。
（参考）
在群期間と各形質間の遺伝相関

| 形 質 | 高 さ | 胸の幅 | 前乳房の付着 | 乳房の深さ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 遺伝相関 | -0.08 | -0.19 | 0.18 | 0.33 |

6．遺伝率注 3 ，信頼度注 4
在群期間の遺伝率は0．08で，泌乳形質（ $0.266 \sim 0.323$ ） や体型形質（ $0.09 \sim 0.46$ ）と比較して低く，遺伝的改良が やや難しい形質であるといえます。

在群期間は，間接的な情報も用いながら評価するため，新しい種雄牛の場合，信頼度が $30 \sim 40 \%$ 程度になります。

在群期間の評価値は，補助的な情報として，分娩難易や気質，搾乳性などの管理形質と同様に参考程度の情報と してご利用ください。

注1 遺伝率： $0 \sim 1$ の範囲で示される。数値が高いほど選抜による改良の可能性が高い。

注 2 信頼度： $0 \sim 100 \%$ の範囲で示される。数値が高い ほど評価値が真の育種価に近似している。
7．インターブルへの対応
インターブルによる長命性（Direct Longevity）の国際評価参加国は18ヶ国（2006年8月現在）となっていますが，各国の考えが反映され，前述した3つの指標のうち，いずれか に統一されている訳ではありませんが，概ね在群期間と生産期間に大別されています。
また，インターブルでは評価は直接評価を採用しているため，一定数以上の娘牛情報を有する古い種雄牛が評価の対象となっています。

[^0]mif

 $\overline{O_{1}}$
 O

 －

\qquad
\qquad
\qquad

酪農家の新たな＂夢＂への挑戦

日本農林規格（JAS）で日本初の『オーガニック牛乳』が誕生しました

津別町の酪農家5戸で構成される，津別町有機酪農研究会メンバーが真心込めて大切に育て た牛から搾った牛乳が，この度『明治オーガニック牛乳』として販売開始されました（平成18年9月 25日より北海道限定）。牛乳の消費拡大が叫ば れる昨今，新たな付加価値を見出すため信念を持って取り組んできた研究会について，お忙しい中会長の山田照夫さんにお話を伺うことが出来ま したので，皆さまにご紹介致します。

津別町という町
津別町は，北海道網走管内の最南端に位置し，総面積の86\％が森林に覆われている自然あふれ る「愛林の町」です。町の西部には夏の新緑•秋 の紅葉が美しいチミケップ湖があり，天然記念物 のクマゲラをはじめ多くの野鳥が棲息しています。 また町の東部に向かう標高947メートルの津別峠 からは屈斜路湖に硫黄山，摩周岳，知床連峰が観え，大自然のパノラマを満喫できるドライブコー スとなっています。

町農業の合言葉は「北の農職家」，クリーン農業推進方針は「こだわり栽培」です。

オーガニック牛乳誕生までの舞台裏

この様なロケーションのもと町内酪農家におい て「人•牛•自然に優しい循環型酪農」として自給

飼料を主体とした放牧酪農を実践することで「こだわり牛乳」を生産したいと検討していたところ，乳業メーカーの意向と合致したため，平成12年，有機の認証を受け た「オーガニック牛乳」生産を目標に町内 20 戸の酪農家で有機酪農研究会は設立されました。

翌平成13年，全会員の圃場で化学肥料を使 わず堆肥•尿•䳕糞等を用いた有機飼料の試験栽培をはじめました。除草剤も一切使わずカルチ ベーターと手取りによる除草を行いました。しかし労力をかけてもどうしても雑草が多くなってしまい，牧草地では裸地が目立ち，慣行栽培に比べ収量 が大きく減少しました。

「ゆう水」施設：牛の尿は3段階に分けてバッキ処理し，その中に微生物を入れ，尿を分解，無味無臭にします。牛の䔬は堆肥に，尿は「ゆう水」 にと変化させてまた利用し，循環型農業を実践しています。
（網走農業改良普及センター 美幌支所提供）
平成14年に全圃場で実施することを決めた時，会員は8戸に減ってしまいました。生育調査と化学的な土壌分析，月に1回の圃場勉強会を行い ましたが，それでも収量は足らず購入飼料に頼ら ざるを得ませんでした。

平成15年には土壌分析に基づく施肥と牧草を秋に追播することで豆科の牧草が増え，裸地が埋まり理想的な草地になりました。収量もようやく慣行栽培並になりました。山田会長は，「土自体 が微生物の多い有機に変化してきたのでは？」と考えます。

農業試験場からも協力を得て，新しい技術として のリビングマルチ（とうもろこし圃場に白クローバー を播種することで雑草対策となる）を取り入れたり，労力のかかる鶏糞散布は業者に依頼したり，と試行錯誤を繰り返しました。

平成17年，この時点で会員は5戸となりました。 しかし，まだ「オーガニック牛乳」生産へのチャレン ジは止まりません。育成部門の有機化のため，町の協力を得て牧場を全て有機とし，濃厚飼料も直輸入の有機飼料に転換しました。有機認証を取得するため，有機サポートチーム（JA•乳業メー カー・家畜保健衛生所•支庁，その他様々な機関 が支援）と協議し生産工程の整備•記録のため の記帳作成•内部規定の作成を推進しています。

有機認証のためには乳房炎軟膏の使用禁止，抗生物質の使用制限（牛乳出荷の期限が 2 倍！） があるため疾病には十分気をつけなければなりま せんが，幸い有機転換後は疾病がほとんど少なく なったそうです。数値化はしていませんが受胎率 も向上したように感じています。【子牛にも粉ミルク を使用せず，有機牛乳を与えています。】

5 戸の搾乳頭数は 230 頭程度，個体乳量は $8,000 \mathrm{~kg}$ で有機農法に転換する前に比べ 1,500 kgほど減少しましたが，乳質は体細胞数 $3 \sim 6$ 万 $/ \mathrm{ml}$（会の目標 10 万以下），生菌数 0.1 万 $/ \mathrm{ml}$ と，国内トップレベルを実現しています。

有機生乳の生産には上記のような多くの労働時間と一定以上のコストがかかる事から，プール乳価にプレミアム乳価が上乗せされます。

そして，遂に日本で初めて農林規格（JAS）のオー ガニック基準に基づく（財）北農会有機認証セン ターの厳しい検査により，有機認証を取得しました。

いよいよ待望の製品化

これらの努力が実を結び，ようやく念願の「オー ガニック牛乳」販売となりました。2日に一度，5戸 の生乳だけを個別に集荷し，札幌工場へ運ばれ製品化されています。

現在は飼料の一部を輸入に頼っていますが，早くからオーガニック牛乳に着手しているデンマー クやスウェーデン，ドイツ，オランダ，アメリカ，世界の どの国を観ても自給飼料で生産しています。今後 は穀物など国内で生産された自給飼料でオーガ ニック牛乳を生産するのが目標です。

山田会長は言います。「オーガニック牛乳は『人•牛•自然に優しい循環型酪農』によるオーガニック牛乳に対する生産者の想い，地域の仲間や関係機関の協力，そして何より消費者の理解なしには成り立たない。せっかく真心込めてつくった牛乳 が完売しなければ意味がありませんから，これから は消費者にぜひ私たちの牧場に足を運んでもらい，有機酪農の大変さを理解してもらいたい。」 そんな会長宛に消費者の一人から寄せられた手紙には「30年前に飲んた懐かしい味」とありました。

いま現在，オーガニック牛乳は北海道内のみで販売されています。今後どの様な手段で皆さまの食卓に登場するのか。是非一度，ほんのり甘くて優しい「オーガニック牛乳」を味わってみて下さい。

有機酪農は簡単なものではありません。環境保護や循環型農業，家畜福祉など有機の理念を実行するには並大抵の覚悟では出来ません，更なる仲間が増え発展されることを期待致しております。
（十勝北見事業所 吉岡勇気）

山田会長の牧場全景（網走農業改良普及センター 美幌支所提供）

土を踏む
しっかりした肢蹄

今後のホルスタイン種雄牛導入について

1．収益性が高く，飼いやすい牛づくりを求めて収益性の高い牛とは，その時代の消費動向や生産者の取り組み方により異なりますが，ここでは 1頭の牛が一生涯にどれだけ収益を上げてくれ たか，つまり儲けてくれたかということで生涯生産性の高い牛としてご理解下さい。

近年，乳牛改良方向を示す指標として長命性 や生産寿命が注目され，わが国も2006－11月乳用種雄牛評価成績より在群期間（淘汰又は死亡 するまでの日数）が新たな情報として追加され，諸外国でもProductive Life（生産寿命），Herd Life （牛群寿命），Durability（耐久性），Longevity（長命），Lifespan（寿命）などで示されています。しか し，これらの指標を活用するなかで，遺伝率（親か ら子孫に伝える遺伝的確率）がとても低いことを認識しておく必要があります。特に，ファーストクロ ップ種雄牛（後代検定直後の信頼度の低い牛など） は指数に対する信頼度も低いため，あくまでも補助資料として活用するのが賢明と思われます。

とは言え，1日でも長く牛群に滞在し，さらに連産性を伴う機能的な牛を求めたいと思っている方は多いことと思います。本団では収益性に加え，繁殖，搾乳，気質，乳質等を兼ね備えた牛，一言でいう と＂飼いやすい牛＂を皆様に提供していきたいと思っています。

2．乳器や肢蹄など長命性に関与する項目を重視生産寿命や長命性を直接的に評価するには長い年月とデータ量が必要になるため，それらと遺伝的に深く関連する（遺伝相関が高い）項目に焦点をおいて導入を進めています。中でも乳器（特 に乳房の深さ，乳房の懸垂，後乳房の高さ），肢蹄，尻の角度といった体型的な部分に目を向けて遺伝資源の導入に取り組んでいます。また，近年に おける近交係数の上昇にともない，アウトクロス牛 の導入についても積極的に取り組んでいきたいと思っています。

3．ブルダムの血液

先に述べた長命性に深く関わる体型項目を備 えている牛として，ロイレーン ジエスロ ET （JP3H03479）を挙げます。ジエスロは多くの方 にご愛好頂いている好体型種雄牛であり決定得点と乳器が全国第1位にランキングされている高信頼度種雄牛です（99R\％）。特に乳房底面が高いことが特徴で種雄牛の母（ブルダム）の血液 として多く利用しています。交配時には後肢後望 が平行な種雄牛を利用しています。

ジェスロの娘
レデイスマナー ラブ パラダイス ET
（更別町 天野 洋一氏 所有）
また，セカンドクロップ娘牛が分娩を始めている キヤローゼルアスタイタニツク ET（JP3H51676） の娘牛にも注目しています。本牛はCVMのキャリ アを保有していることから交配が限定されていま したが，娘牛の乳器評価がとても高いころからブ ルダムの血液として取り入れていきたいと思ってい ます。その他にもストマテイツク（200H4144），フイ ンリー（11H5570），BWマーシヤル（7H5375）， ダーハム（ 7 H 5157 ），また肢蹄評価の高いタイタ ニツク（200H3121）や中程度なサイズで乳頭の長さ，配置が好ましいオーマン（7H6417）も利用 しています。また，ルドルフ（73H1965）について は実際の在群期間が長い娘牛が多見されており，意識的にペテグリーに取り入れています。

また，未経産牛ではノマド（JP5H51940）， ピクストン シヤトル（イギリス種雄牛），ゴールドウイン （200H3205）を利用し，今後はホツトショツト （JP3H52371），ドミトリー（JP3H52304），トツプ ドリーム（JP3H52078）やトイストーリー（1H7235）， エンシーノ（1H7154）を積極的に利用していく予定です。

4．計画交配に利用する種雄牛

一方，計画交配に用いる種雄牛としてライス クレストヒルトン ET（JP3H52585）を挙げます。 ヒルトンは国内初のハーシエルの息子牛であり，肢蹄評価は全国第2位にランキングされています。母方祖父のマンフレッドは長命性の高い血液とし ても注目されていることが他のハーシエルの息子牛よりも魅力的であると自負しています。

また，理想的な尻の角度を備えているフアーオーラ サミー ソーサ ET（JP3H52774）とデリア ファミ リーの好体型を持ち，在群期間情報も103と高い クリーク BWM ダンデイ ET（JP3H52603）も利用していく予定です。

その他，ボルトン（ 29 H 11111 ）やジエットストリーム （29H10792）についても取り入れています。

5．おわりに

現在，海外からの遺伝資源の導入は家畜衛生面と国内における優良雌牛の拡大増殖のメリット を考慮して凍結受精卵を利用して取り進めていま す。

本団における遺伝資源導入における遺伝レべ ルの＂ものさし＂は，国内外問わず＂1つ＂で取り組 んでいます。そのような中で，現在国内には世界レ ベルで優秀な雌牛が多く存在しているので，ブル ダムとして積極的に取り入れております。

乳牛改良において高い能力を維持することは当然のこととし，今後はさらに乳器，肢蹄など長命性に関与する項目を追求し，合わせてアウトクロス や受胎性を兼ね備えた種雄牛を皆様にお届けし たいと思っております。
（乳牛改良課 藤田 功）

ストーマテイツクの娘
ヘンカシーン ストーマテイツク ヒラリー（湧別町 五島 順二氏 所有）

フインリーの娘
プライセス スター フインリー ET（阿寒町 高橋 龍一氏 所有）

ピクストン シヤトルの娘（アメリカ）

黒毛和種 産肉能力検定の＂現状と今後＂

1．ジェネティクス北海道における検定方法の経緯について ジェネティクス北海道では，平成6年度より黒毛和種種雄牛の間接検定を実施して参りました。 その後，現場後代検定にも取り組み，平成16年度より間接検定に併用して，現場後代検定も実施 し，種雄牛造成を行ってきました。

現在，後代検定を実施する種雄牛は年間6種雄牛とし，1種雄牛当たり検定材料牛 50 頭の確保を目指しております（間接検定材料牛：去勢10頭，現場後代検定材料牛：雌 25 頭，去勢：15頭）。

平成18年度からは現場後代検定に一本化し たため，両検定を実施した種雄牛は，『北安勝23』『北大日 $24 』$ 『北勝隆 $25 』$ 『北安菊 $27 』$ 『繁見』『国挛白清』『北安柳33』『北次郎34』『襟裳勝36』 の9頭となります。

検定を終了した種雄牛の間接検定と現場後代検定の単純比較はできませんが，両検定を終了し

母の父 ：糸晴波 \times 母の祖父：安福金
肥育者：音更町 小助川 昌司氏
枝肉重量 479 kg ：ロース芯面積 54 cm
BMS No． 9 ：格付A－5

た『北安勝23』『北大日2 4』『北勝隆 25 』の現場後代検定の上物（4等級以上）率が $57.1 \%, ~ 20.0 \%$ ， 53.8% で，間接検定の脂肪交雑が，それぞれ3．3， 2．3，3．6と，おおむね同様 の傾向を示しました。

『北安勝 23 』は現場後代検定の材料牛 35頭中，上物は 20 頭でした。 そのうち1頭は第3回 ジェ

ネティクス北海道黑毛和種枝肉共励会で，優良賞 を獲得しております。また，同共励会で『北勝隆25』 は19頭出陳され，その上物率は 68.4% であり，最優秀賞と優秀賞をも獲得しており，その実力を十分に発揮しておりました。
2．最近の成績と今後の成績の判明時期について
現在，間接検定と現場後代検定を併用して実施している種雄牛の血統と成績判明時期をおう知 らせいたします。

H黒－127：『北安菊27』は，安平×菊照土井×安谷土井 \times 安美土井 \times 菊則土井と純然たる兵庫系の血統背景を持つ種雄牛であり，間接検定成績は，脂肪交雑 2.8 ，枝肉重量 346 kg ，DG 0.94 ， ロース芯面積 $46 \mathrm{~cm}^{2}$ でした。

現場後代検定では，材料牛 27 頭中 23 頭が判明し，上物率は 43.5% でした。最近，BMS No．8の材料牛が続けて4頭出ており，残り4頭から目が離 せません。

母の父：深晴波 \times 母の祖父：福栄肥育者：音更町 前田 精一氏枝肉重量 514 kg ：ロース芯面積 $61 \mathrm{~cm}^{2}$ BMS No． 9 ：格付A－5

H黒－131 繁 見現場検定調査牛

母の父 ：北国7の8 \times 母の祖父 ：紋次郎肥育者：新ひだか町新ひだか町和牛センター枝肉重量 386 kg ：ロース芯面積 73 cm BMS No． 11 ：格付A－5

H黒－131：『繁見』は，安福165の9×第20平茂 \times 金一×第 15 気高 \times 藤花と，気高系と兵庫系 のハーフの種雄牛と言えます。間接検定成績は，脂肪交雑3．7，枝肉重量 389 kg ，DG1．09，ロース芯面積 $45 \mathrm{~cm}^{2}$ でした。

現場後代検定では，材料牛39頭中 25 頭の成績が判明し，上物率は 32.0% でした。材料牛は第3回 ジェネティクス北海道黒毛和種枝肉共励会の優秀賞獲得に加え，BMS No．11，ロース芯面積 $73 \mathrm{~cm}^{2}$ の検定材料牛を輩出しており，今後，注目の種雄牛です。

H黒－132 国牽白清 間接検定材料牛

間検調査牛生産者：
池田町田村利男氏
母の父：北国7の8×母の祖父：谷水

間検調査牛生産者北見市留辺薬町藤田 敏秋 氏母の父：神桜の10 x 母の祖父：第3神竜の4

間検調査牛生産者旭川市江丹別 森内 恒夫 氏母の父：平茂勝 \times 母の祖父：北国7の8

H黒－132：『国牽白清』 は，飛驒白清×茂勝×紋次郎×糸光×晴美と各系統の良さをバランス良 く取り入れた種雄牛です。間接検定成績は，脂肪交雑3．5，枝肉重量 377 kg ， DG1．02，ロース芯面積 $49 \mathrm{~cm}^{2}$ とすばらしい結果 でした。間接検定材料牛の枝肉は，日本食肉格付協会の格付でも上物率 66.7% を誇つておりま す。枝肉を並べて見ても斉一性のある種雄牛で した。現場後代検定の結果は平成19年8月～平成19年11月に判明の予定です。

H黒－133：『北安柳33』は，第20平茂×安平×隆桜×菊城×尾鈴という血統構成であり，気高系 に兵庫系を交配し，気高系で戻した種雄牛です。間接検定成績は，脂肪交雑 2.8 ，枝肉重量 389 kg ， DG1．08，ロース芯面積 $50 \mathrm{~cm}^{2}$ でした。枝肉重量， DGの良さにその実力を秘めており，現場後代検定は平成19年11月9日までに判明の予定です。

H黒－134：『北次郎34』は，間接検定成績判明前の種雄牛であり，血統構成は兵庫系の血液が強く，谷福土井×紋次郎×安美土井×安千代土井×秀菊です。間接検定の終了は平成19年1月 22日，現場後代検定の終了予定はさらに一年後 の平成20年1月14日となります。

H黒－136：『襟裳勝36』も間接検定成績判明前の種雄牛で，血統構成は，平茂勝×糸福（大分） ×八重福 \times 玉久 \times 第 3 豊桑と大分を代表する体積に富む種雄牛が交配されており，更に平茂勝 の交配により，本牛も発育良く，検定材料牛も同様 です。間接検定は平成19年3月14日に，現場後代検定は平成20年3月13日に終了する予定です。

3．両検定終了牛の現場後代検定の血統構成について

H黒－123：『北安勝23』は，平茂勝×安福×谷福土井×安美土井×菊美土井で気高系と兵庫系のハーフの種雄牛です。間接検定成績は，脂肪交雑3．3，枝肉重量 383 kg ，DG0．98，ロース芯面積 $47 \mathrm{~cm}^{2}$ と，気高系としてはDGが若干小さ目の印象ですが，枝肉は総じてボリユームがあり，雌で もサイズの期待できる種雄牛です。現場後代検定の成績は上物率が 57.1% ，枝肉重量が去勢で 462.2 kg ，雌で412．3kgとなっています。

平茂勝の産仔のためか，兵庫系に交配されて いる材料牛が多く，兵庫系の材料牛は，雌牛が 11 頭の成績で，屠畜月齢29．1ヶ月齢，枝肉重量 401.1 kg ，平均BMS No． 5.5 ，ロース芯面積 $52.5 \mathrm{~cm}^{2}$ でした。同じく去勢牛は5頭の成績で，屠畜月齢 27．6ヶ月，枝肉重量454．2kg，平均BMS No．7．2， ロース芯面積 $54.8 \mathrm{~cm}^{2}$ と，充分成果が見られたと思われます。

また，他の雌材料牛は，藤良系 4 頭，波系 2 頭，気高系2頭，広島系4頭で，BMS No．平均は，7．2， 7．0，7．0，6．0と良好であり，枝肉重量も $430 \mathrm{~kg}, ~ 419 \mathrm{~kg}$ ， $414 \mathrm{~kg}, ~ 424 \mathrm{~kg}$ でした。去勢牛に関しては系統毎 の例数が少なく，分析することができませんでしたが， その枝肉重量に関しては上位クラスの実力です。

H黒－125：『北勝隆25』は，父 平茂勝，母の父隆桜，祖母の父 第20平茂，祖母の母の父にも第 33平茂と母方 5 代祖の豊川に至るまで，気高系 の強い種雄牛です。間接検定成績は脂肪交雑3．6，枝肉重量 408 kg ，DG1．12，ロース芯面積 $49 \mathrm{~cm}^{2}$ とその血統の実力をまざまざと見せつけているよう な気がします。

現場後代検定の材料牛は，『北安勝23』同様，兵庫系への交配が多く，去勢牛5頭，雌牛14頭 がおり，それぞれの屠畜月齢は28．9カ月齢と29．4 ヶ月齢，枝肉重量は 426.0 kg と 435.0 kg ，平均の BMS No．は6．0と5．7，ロース芯面積54．8 cm^{2} と $55.4 \mathrm{~cm}^{2}$ でした。他の材料牛を血統別に見ると例数は少ないですが，枝肉重量で波系の去勢 494 kg ，広島系の去勢 488 kg ，藤良系の雌 448 kg ，気高系の雌 447 kg と 29 ヶ月に満たない屠畜月齢では

ありましたが，十分な量と言えます。BMS No．に関 しては系統別に大差は見られなく，ロース芯面積 についても揃っておりました。
4．これからの産肉能力検定のあり方について現在本団では，現場後代検定に主眼を置いて産肉能力検定を行っております。現場後代検定 においては，上記のように本団で全ての材料牛の データを把握することができます。現場後代検定 の産肉能力成績は，確実に育種価にフィードバッ クされることになっております。自分の牧場の未来 を担う若雌牛育種価の早期判定にも利用するこ とができます。未経産牛に検定牛を人工授精す れば母親が 4 歳時には産肉能力の情報が判明し ますので，2産目や3産目の産仔を後継牛として保留することも可能になります。

自分の牧場の優良後継牛の育種価情報収集と，本団の今後の種雄牛造成にも参加いただいて一挙両得の中で後代検定牛をうまく活用して頂き たいと思います。！！
（肉牛改良課 石田 誠）

精液の中の性比

前回，牛における出生時の性はオスの割合が多いことを報告しました。ある研究によればその比率はメスの数を100とした場合，オスは108となっているとのことです。何故このようなことが起 こるのでしょうか？そもそもX精子とY精子は1：1のはずですが…。

男の子と女の子どっち？

これから子作りに励む予定の方に質問です。男の子と女の子，どちらがほしいですか？日本でこ の質問をすると，一番多いのが「女の子がほしい」 という答えだそうです。そんな「女の子がほしい，男の子がほしい」という夫婦の間には，こんな噂が まことしやかに囁かれています…。
噂その（1）：
酸性食品を食べると女の子が産まれやすい！？
『Y精子は酸性に弱いため，母親が酸性食品 を食べると女の子が生まれやすい』…X精子とY精子ではpHに対する感受性が異なるとの報告も

ありますが，産み分けできるかに関しては否定的 な研究が多いです。

噂その（2）：

排卵数日前にHをすると女の子が産まれや

 すい！？『Y精子はX精子よりも運動速度が速く生存時間が短いため，排卵日前にHをすると女の子が産 まれやすい』…最新の研究によると，運動速度に差はないようです。

噂その（3）：

Y精子の数はX精子の2倍！？

『Y精子は数が多い』…そんな馬鹿な！？

X精子とY精子の数

哺乳類では性染色体の組み合わせによって性 が決定します。この組み合わせを左右するのが精子です。

ウシでは精祖細胞と呼ばれる細胞が複数回の分裂を行い，精母細胞が形成されます。精母細胞はさらに分裂•分化を行い，XとYそれぞれの性染色体を持つ精子が形成されます。これらの過程 では，分裂が同調して行われるため，理論的には X精子とY精子の割合は1：1になるはずです（図1）。

図1．精子形成過程（模式図）

受精卵の性比

X 精子と Y 精子の受精能力に違いがないと仮定すると，精子が $1: 1$ であるということは受精卵の性比は1：1になるということです…。

しかしある研究によれば，ウシの体外受精卵の性比を調査した結果，受精してすぐの性比はオス に偏っているそうです。また，受精卵が発育する途中で受精卵の性比は1：1に近づいてゆくそうで す。つまり，ウシの出生時における性比よりも，受精卵の性比はオスの方がより高くなっているというこ とです。これはウシだけでなくヒトの場合も同様の傾向にあるそうです。この事実はX精子とY精子 には何らかの違いがあるということを指し示してい ます。その差は一体何なのでしょうか？

Y精子の割合は一定ではない

先ほど一蹴してしまったウワサ（3）ですがこの説 は「Y精子はX精子の 2 倍死にやすいため，Y 精子はX精子の 2 倍存在している。」という理論のよ うです。

いくらなんでもそんなはずはないだろう。と思って

いたところ，それを覆すとまではいかないものの， XとYの比率は常に1：1ではないという研究結果 が報告されていることがわかりました。さっそく中身を見てみましょう。

Chandler ら（文献1）はホルスタイン種雄牛の精液を7日ごとに継続的に採取し，その精液中のY精子の割合を調査しました。その結果が図2です。

図2．Y精子の割合（原著より作成）
これをみると Y 精子の割合は常に変動しています。 また，その平均はわずかに Y 精子が多くなっていま す。さらに，継続的な採精によってY精子の割合 が増加してゆくという傾向が見受けられます。これ が確かならば，精子の性質どころか数自体が異な っていることになります。

さらに彼らは2006年の報告（文献2）で，検査し た精液中のY精子割合と実際に産まれた産子の性比には関連性があったと報告しています。全て真実であると断定はできませんが興味深い研究です。 まとめ

性比に対するオス側の影響を調べるのは難し いため，あまり研究されていません。「何が異なる のか？何故そうなるのか？」は正直なところ誰もわ からないというのが現状です。仮にそこに必然性 があったとしても，我々には偶然にしか見えないの かもしれません。

誰ですか「GHの種雄牛精液のY精子はどうなの」 なんて考えたのは…。オスが多い！？偶然です，偶然！きっと。
（技術開発課 山崎嵩崇）

参考文献

1）Candler，J．E．et al．（2002）Theriogenology， 57，1327－1346．
2）Candler，J．E．et al．（2006）Theriogenology， Oct．12，【Epub ahead of print】．

事業所だより 各地の新鮮な情報をお届けします！！

道央北事普所

道央北事業所より新春のご挨拶を申し上げます。本年が皆様にとって実り多き年でありますよう心からお祈 り申し上げます。

新春のSIREを飾っていただくニューフェイスを紹介致 します。

平成18年3月1日より，道北の地•稚内市の稚内AIセン ターで授精師として活躍されている植田千穂さんを紹介致します。彼女は，大阪府天王寺区出身，5年前まで大阪で普通のOLをしておりました。平凡な日々の中，ふと自分の人生を見つめ直したのをきっかけに弟子屈町で酪農を体験し，念願の人工授精師になりました。現在は全頭1年1産を目標に，生産者の方々や渡辺所長にビシバ シ鍛えられながら充実した日々を送って おります。稚内市に お越しの際は，ぜひ お立ち寄り下さい，今後とも宜しくお願 い致します。

植田さん，今後益々 の活躍を期待してお
 ります。！

十滕北見事業所

全国のみなさん，明けましておめでとうございます！年をまたいでしまいましたが，昨年9月，当事業所に新た なメンバーが加わりましたのでご紹介させて頂きます。
名 前：
村本 真一
あだ名：しん
生年月日：
1980年11月28日
血 液 型：O型
出 身 地：
山口県 岩国市

出 身 校：帯広畜産大学 生物資源科
職 歴：十勝清水町農業協同組合乳牛検定事業
趣 味：競馬
一番の口説き文句は？
「アナタガ好キダカラ…」
これから出会う技術員さん・農家さんに気合の入った
一言をどうぞ！
「未熟者ですが，みなさんのお役に立てるよう，一生懸命がんばりますのでヨロシクお願いします。」

我々古株（？！）も若い爽やかな村本君と共に，元気いっ ぱい張り切っていますので今年も十勝北見事業所を宜し〈お願いしま～～す 〉

道東事事所

新年明けましておめでとうございます。
旧年中は大変にお世話になりました。本年も変わらぬご支援ご協力をお願い致します。

新年第一弾と致しまして，頑張っておられる授精師さ んを御紹介いたします。

所 属：根室農業協同組合 生産販売課
名 前：浜地 麻耶
生年月日：1980年1月17日
出 身 地：大阪府

平成18年3月15日より根室農協の家畜人工授精師と して勤務しております。以前は大阪府にある有料老人ホ ームで，認知症や障害を持った方達の介護職員として勤 めていました。まだまだご迷惑をかけてばかりですが，元気ハツラツ頑張ります！

どうぞ，宜しくお願いします。

所 属：計根別農業協同組合 酪農課 酪農係名 前：森脇 拓也
生年月日：1985年6月20日
出 身 地：中標津町
星 座：双子座
趣 味：音楽鑑賞，

昨年の四月から計根別農協で働らいている，森脇拓也です。日々勉強の毎日ですが，先輩授精師から色々と教えてもらいながら頑張っています。休みの日などは車で あてのない旅をしています。これから色々な機会でお会 いすることがあると思いますが宜しくお願いします。

[^0]: O

